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Abstract. The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of
coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion
laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling
coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the
frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes’) wave
solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two
(individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled,
present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable
wavenumber windows may arise simultaneously.

PACS. 05.45.Yv Solitons – 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical
chaos and complexity, and optical spatio-temporal dynamics – 42.65.Jx Beam trapping, self-focusing and
defocusing; self-phase modulation – 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other
interactions (including parametric effects, mode coupling, ponderomotive effects, etc.)

Amplitude modulation (AM) is a widely known nonlin-
ear mechanism dominating wave propagation in disper-
sive media [1]; it is related to mechanisms such as modu-
lational instability (MI), harmonic generation and energy
localization, and possibly leads to soliton formation. The
study of AM generically relies on nonlinear Schrödinger
(NLS) type equations [2]; a set of coupled NLS (CNLS)
equations naturally occurs when interacting modulated
waves are considered. CNLS equations are encountered
in physical contexts as diverse as electromagnetic wave
propagation [3,4], optical fibers [5,6], plasma waves [7–9],
transmission lines [10], and left-handed (negative refrac-
tion index) metamaterials [11]. A similar mathematical
model is employed in the mean-field statistical mechani-
cal description of boson gases, to model the dynamics of
Bose-Einstein condensates [12–14]. In this paper, we shall
investigate the (conditions for the) occurrence of MI in
a pair of (asymmetric) CNLS equations, from first prin-
ciples. A set of stability criteria are derived, to be tai-
lor cut to a (any) particular problem of coupled wave
propagation.

1 The model

Let us consider two coupled waves propagating in a dis-
persive nonlinear medium. The wave functions (j = 1, 2)
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are modelled by ψj exp i(kjr−ωjt)+ c.c. (complex conju-
gate), where the carrier wave number kj and frequency ωj
of each wave are related by a dispersion relation function
ωj = ωj(kj). Nonlinearity is manifested via a slow mod-
ulation of the wave amplitudes, in time and space, say
along the x-axis. The amplitude evolution is described by
a pair of CNLS Eqs.
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The group velocity vg,j and the group-velocity-dispersion
(GVD) term Pj corresponding to the j−th wave is re-
lated to (the slope and the curvature, respectively, of)
the dispersion curve via vg,j = ∂ωj/∂kj,x and Pj =
∂2ωj/2∂k2

j,x (differentiation in the direction of modula-
tion). Qjj and Qjj′ model carrier self-modulation and
wave coupling, respectively. No hypothesis holds, a priori,
on the sign and/or the magnitude of either of these coef-
ficients. The group velocities are often assumed equal, in
which case (and only) the corresponding terms are readily
eliminated via a Galilean transformation. The combined
assumption P1 = P2, Q11 = Q22 and Q12 = Q21 is of-
ten made in nonlinear optics [4,15]. The case P1 = P2,
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Q11 = Q21 and Q12 = Q22 was also recently reported, in
negative refarction index composite metamaterials [11].

2 Modulational (in)stability of single waves

Let us first briefly outline, for later reference, the anal-
ysis in the case of a single modulated wave, say here
recovered by setting ψ2 = 0 in equations (1); the (sin-
gle) NLS equation is thus obtained. According to the
standard formalism [1,2], ψ1 (= ψ, dropping the index
in this paragraph) is modulationally unstable (stable) if
PQ > 0 (PQ < 0). To see this, one may first check
that the NLS equation is satisfied by the plane wave so-
lution ψ(x, t) = ψ0 e

iQ|ψ0|2t, where ψ0 is a constant (real)
amplitude. The standard (linear) stability analysis then
shows that a linear perturbation (say ψ0 → ψ0 + δψ, with
δψ = εψ1, where ε� 1) with frequency Ω and wavenum-
ber K [i.e. ψ1 ∼ exp i(Kx − Ωt)] obeys the dispersion
relation: (Ω − vgK)2 = P K2

(
P K2 − 2Q |ψ0|2

)
, which

exhibits a purely growing unstable mode if K ≤ Kcr,0 =
(2Q/P )1/2 |ψ0| (hence only if PQ > 0). The growth rate
σ = ImΩ attains a maximum value σmax = Q |ψ0|2
at Kcr,0/

√
2. For PQ < 0, on the other hand, the wave is

stable to external perturbations.

3 Coupled wave stability analysis

In order to investigate the modulational stability pro-
file of a pair of coupled waves, we shall first seek an
equilibrium state in the form ψj = ψj0 exp[iϕj(t)] (for
j = 1, 2), where ψj0 is a (constant real) amplitude
and ϕj(t) is a (real) phase, into equations (1). We thus
find a monochromatic (fixed-frequency) solution of the
form ϕj(t) = Ωj0t, where Ωj0 = Qjjψ

2
j0 + Qjlψ

2
l0 (for

j �= l = 1, 2, henceforth understood everywhere). Con-
sidering a small perturbation around equilibrium, we take
ψj = (ψj0 + δψj) exp[iϕj(t)], where δψj = εψj1(r, t) is
a small (ε � 1) complex amplitude perturbation of the
wave amplitudes. Substituting into equations (1) and sep-
arating real and imaginary parts by writing ψj1 = aj+ ibj
(where aj , bj ∈ �), the first order terms (in ε) yield
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Eliminating bj , these equations yield
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(along with a symmetric equation, upon 1 ↔ 2). Let
aj = aj0 exp[i(Kx − Ωt)]+ c.c., where K and Ω are

the wavevector and the frequency of the perturbation,
respectively, viz. ∂/∂t → −iΩ and ∂/∂x → iK. We
thus obtain an eigenvalue problem in the form Ma =
Ω2a, where a = (a10, a20)T and the matrix elements
are Mjj = PjK

2 (PjK2 − 2Qjjψ2
j0) ≡ Ω2

j and Mjl =
−2PjQjlψj0ψl0K2 (for l �= j = 1 or 2)
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2

]
= Ω4

c (4)

where Ω4
c = M12M21. This dispersion relation is a 4th

order polynomial equation in Ω.

4 Equal group velocities

For vg,1 = vg,2, setting Ω − vg,1/2K → Ω reduces (4) to

Ω4 − TΩ2 +D = 0, (5)

where T = TrM ≡ Ω2
1 +Ω2

2 and D = DetM ≡ Ω2
1Ω

2
2 −Ω4

c

are the trace and the determinant, respectively, of the
matrix M. Equation (5) admits the solution Ω2 = 1
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Stability is ensured (for any wavenumber K) if (and
only if) both of the (two) solutions of (5), say Ω2

±, are
positive (real) numbers. In order for the right-hand side
to be real, the discriminant quantity ∆ = T 2 − 4D =
(Ω2

1 −Ω2
2)2 +4Ω4

c has to be positive. Furthermore, recall-
ing that the roots of the polynomial p(x) = x2 − Tx+D,
say r = r1,2, satisfy T = r1 + r2 and D = r1r2, the sta-
bility requirement is tantamount to the following three
conditions being satisfied simultaneously: T > 0, D > 0
and ∆ = T 2 − 4D > 0.

The first stability condition, namely the positivity of
the trace T : T = K2[K2

∑
j P

2
j −2

∑
j PjQjjψ

2
j0] > 0, de-

pends on (the sign of) the quantity q1 ≡ ∑
j PjQjj |ψj0|2

which has to be negative for stability. The only case en-
suring absolute stability (for any ψj0 and k) is

P1Q11 < 0 and P2Q22 < 0. (7)

Otherwise, T becomes negative (and thus either Ω2
− <

0 < Ω2
+ or Ω2− < Ω2

+ < 0) for K below a critical
value Kcr,1 = (2

∑
j PjQjjψ

2
j0/

∑
j P

2
j )1/2 > 0 (cf. the

single wave criterion above); this is always possible for
a sufficiently large perturbation amplitude |ψ20| if, say,
P2Q22 > 0 (even if P1Q11 < 0). Therefore, only a pair of
two individually stable waves can be stable, or the pres-
ence of a single unstable wave may de-stabilize its coun-
terpart.

The second stability condition, namely positivity of
the determinant D, amounts to

D(K2) = P1P2K
4
[
(P1K

2 − 2Q11ψ
2
10) (P2K

2 − 2Q22ψ
2
20)

− 4Q12Q21ψ
2
10ψ

2
20

]
> 0.
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We see that D(K2) bears two non-zero roots for K2,
namelyK2
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20] be non-positive, i.e. ∆′ ≤ 0 (this

is only possible if P1P2Q12Q21 < 0 and for a spe-
cific relation to be satisfied by the perturbation am-
plitudes ψj0; that is, it cannot be generally satis-
fied, ∀ψj0), or

– that ∆′ > 0 and both of the (real) non-zero roots
K2
D,1/D,2 of D(K2) be negative; this is ensured if

q2 < 0 and q3 > 0. If q3 > 0 and q2 > 0, then the
two rootsK2

D,1/D,2 will be positive (0 < K2
D,1 < K2

D,2)
and the wave pair will be unstable to a perturbation
with intermediateK, i.e. K2

D,1 < K2 < K2
D,2. If q3 < 0

(regardless of q2), thenK2
D,1 < 0 < K2

D,2, and the wave
pair is unstable to a perturbation with K2 < K2

D,2.

These instability scenaria and wavenumber thresholds are
sufficient for symmetric wave systems (i.e. upon 1 ↔ 2),
as we shall see below.

The last stability condition regards the positivity of
the discriminant quantity ∆ = T 2 − 4D (irrelevant if
D < 0). We consider the inequality

∆(K2) = K4 (d4K
4 − d2K

2 + d0) > 0
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here.
If P1 = P2 = P , this condition reduces to d0 > 0, i.e.

here d0 = 4P 2[(Q11ψ
2
10 − Q22ψ

2
20)

2 + 4Q12Q21ψ
2
10ψ

2
20] ≡

4P 2q4. Stability (for all ψj0) is thus only ensured if
Q12Q21 > 0. For symmetric wave pairs, i.e. for P1 = P2 =
P and Q12 = Q21, this last necessary condition for stabil-
ity is always fulfilled. If, on the other hand, Q12Q21 ≤ 0,
the wave pair will be unstable in a range of values (e.g. of
the ratio ψ10/ψ20), to be determined by solving d0 < 0).

Let us now assume (with no loss of generality) that
P1 > P2. Since ∆′′ = d2

2 − 4d4d0 = −64P1P2Q12Q21(P 2
1 −

P 2
2 )2ψ2

10ψ
2
20, the stability condition ∆ > 0 is satisfied for

all K and ψj0 only if the quantity q5 ≡ P1P2Q12Q21 is
positive, hence ∆′′ < 0; again, this is always true for sym-
metric waves. Now if, on the other hand, q5 < 0 (i.e.
∆′′ > 0), then one needs to investigate the sreduceigns
of d2 = K2

∆,1 + K2
∆,2 ≡ q6 and d0 = K2

∆,1K
2
∆,2 ≡ q7, in

terms of the amplitudes ψj0. Here, K2
∆,1/∆,2 = 1

2d4
[d2 ∓√

d2
2 − 4d4d0]. Similar to the analysis of the previous con-

dition (see above), one may easily see that both signs are
possible for both quantities d2 and d0. The only possibility
for stability (∀K) is provided by the combination d2 < 0
and d0 > 0 (hence K2

∆,1 < K2
∆,2 < 0). The possibility

for instability arises either for K2
∆,1 < 0 < K2 < K2

∆,2
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Fig. 1. The square of the instability growth rate γ2 ≡ −Ω2
−

is depicted versus the perturbation wavenumber K (arbitrary
parameter values). Notice the difference from the single wave
case (lower curve).

(if d0 < 0), or for 0 < K2
∆,1 < K2 < K2

∆,2 (if d0 > 0 and
d2 > 0). As above, see that we obtain the possibility for a
window of instability far from K = 0.

Instability is manifested as a purely growing mode,
when one or more of the above conditions are violated. In
specific, if T < 0 and/or D < 0, then one (or both) of the
solutions of the dispersion relation (4) (for Ω2) becomes
negative, say Ω2− < 0 [given by (6)]; the instability growth

rate in this case is given by σ ≡
√
−Ω2−, and is manifested

in the wavenumber ranges [0,Kcr,1] and either [0,KD,2]
or [KD,1,KD,2] (depending on parameter values; see the
definitions above).

If ∆ = T 2 − 4D < 0, on the other hand (hence
D > 0), then all solutions of (4) are complex, thus de-
veloping an imaginary part Im(Ω2

±) = ±√|∆|/2, so (the
maximum value of) Im(Ω±) = Im(Ω2

±)1/2 gives the insta-
bility growth rate σ. As found above, this will be possible
for wave numbers either in [0,K∆,2] or [K∆,1,K∆,2] (see
the definitions above).

The analysis indicates that up to three different unsta-
ble wavenumber “windows” may appear; these windows
may either be partially superposed, or distinct from each
other. One may therefore qualitatively anticipate MI oc-
curring for K ∈ [0,Kcr] (some threshold) and, also, for
K ∈ [K ′

cr,K
′′
cr] (K ′

cr may be higher or lower than Kcr,
depending on the problem’s parameters). Furthermore,
the instability growth rate witnessed may be dramati-
cally modified by the coupling, both quantitatively (higher
rate) and qualitatively (enlarged unstable wavenumber re-
gion); see in Figure 1.

Summarizing the above results, should one wish to in-
vestigate the occurrence of modulational instability in a
given physical problem, one has to verify condition (7),
and then consider the (sign of the) quantities q1, ...q7
(defined above).

5 The role of the group velocity misfit

It may be interesting to discuss the role of the group ve-
locity difference, in a coupled wave system. Keeping the
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Fig. 2. The functions f1(x) (parabola) and f2(x) (rational
function, two vertical asymptotes) defined in the text are de-
picted, vs. x, for A = B = −1, C = 0.5 (so that D = AB−C =
+0.5 > 0), x1 = x2 = 0 (equal group velocities). Note that a
group velocity mismatch (a horizontal shift) may destabilize a
pair of (stable, separately) waves (i.e. reduce the intersection
points from 4 to 2).

discussion qualitative, we shall avoid to burden the pre-
sentation with tedious numerical calculations. One may
rather point out the role of the group velocity misfit via
simple geometric arguments. Inspired by an idea proposed
in reference [7], we may express the general dispersion re-
lation (4) in the form

f1(x) = f2(x) (8)

where we have defined the functions f1(x) = (x−x1)2 +A
and f2(x) = C

(x−x2)2+B
, and the real quantities xj =

Kvg,j , A = −Ω2
1 = −M11, B = −Ω2

2 = −M22, and
C = Ω4

c = M12M21; x here denotes Ω. The stability
profile is determined by the number of real solutions of
equation (8), an integer, say r, between 0 and 4. For abso-
lute stability (for any K, |ψj0|), we need to have 4 real
solutions; in any other case, i.e. if r < 4, the (imagi-
nary part of) the 4−r complex solutions determine(s) the
growth rate of the instability. Note that x1 �= x2 expresses
the group velocity mismatch vg,1 �= vg,2. Negative A (B)
means that wave 1 (2) alone is stable, and vice versa.

Let us first consider a wave pair satisfying C > 0, i.e.
for M12M21 ∼ P1P2Q12Q21 > 0 (a symmetric wave pair,
for instance). We shall study the curves representing the
functions f1(x) and f2(x) on the xy plane. The former
one is a parabola, with a minimum at (x1, A). The lat-
ter one is characterized by a local maximum (for C > 0)
at (x2, C/B), in addition to a horizontal asymptote (the
x-axis), since f2(x) → 0 for x → ±∞. Furthermore, for
B < 0 (only), f2(x) has two vertical asymptotes (poles) at
x = x2 ±

√|B| (see Figs. 2, 3). Now, for a stable - stable
wave pair (i.e. for A,B < 0), we have seen that the disper-
sion relation (4) predicted stability. This result regarded
the equal (or vanishing) group velocity case, vg,1 = vg,2,
and may be visualized by plotting f1(x) and f2(x) for
x1 = x2 and A,B < 0; see Figure 2a. Let us first assume
that D = M11M22−M12M21 = AB−C is positive, imply-
ing (forB < 0) thatA < C/B; thus, the minimum of f1(x)
lies below the local maximum of f2(x). Thus, 4 points of
intersection exist (cf. Fig. 2), for x1 = x2 and A,B < 0;

-2 -1 1 2
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1.5

1.75

2 y  

x 
Fig. 3. The functions f1(x) and f2(x) are depicted, for A =
B = +1, C = 0.5 (so that D = AB−C > 0), and x1 = x2 = 0.
At most 2 intersection points may occur by translation. A pair
of (unstable, separately) waves is always unstable.

this fact ensures stability, as we saw above via analyti-
cal arguments, for vg,1 = vg,2 and M11,M22 > 0 (both
waves individually stable). Now, considering vg,1 �= vg,2
results in a horizontal shift between the two curves (cf.
Fig. 2), which may exactly result in reducing the number
of intersection points from 4 to 2 (enabling instability).
Therefore, a pair of stable waves may be destabilized due
to a finite difference in group velocity.

Still for a stable-stable wave pair (A,B < 0), let us
assume that D = AB − C < 0, implying (for B < 0) that
A > C/B. Thus, the minimum of f1(x) here lies above the
local maximum of f2(x), and only 2 points of intersection
now exist, (shift the parabola upwards in Fig. 2 to see
this); this fact imposes instability (forD < 0), as predicted
above.

Considering an unstable - unstable wave pair (i.e.
A > 0 and B > 0) with D = AB − C > 0 (A > C/B).
Plotting f1(x) and f2(x) for x1 = x2 and A,B > 0 (see
Fig. 3), we see that the minimum of f1(x) lies above the
local maximum of f2(x). No points of intersection exist,
a fact which prescribes instability. Considering vg,1 �= vg,2
simply results in a horizontal shift between the two curves,
which does not affect this result at all. On the other
hand (still for A > 0 and B > 0), now assuming that
D = AB −C < 0, i.e. A < C/B, results in a vertical shift
downwards of the parabola in Figure 3; at least 2 complex
solutions obviously exist, hence instability. Therefore, a
pair of unstable waves is always unstable (∀vg,1, vg,2).

Still for C > 0, one may consider a stable - unstable
wave pair (say, for A < 0 and B > 0, with no loss of gener-
ality): the plot of f1 and f2 (here omitted) would look like
Figrue 3 upon a strong vertical translation of the parabola
downwards (so that the minimum lies in the lower half-
plane, since A < 0). Instability (r = 2) dominates this
case also.

Let us now consider a wave pair satisfying C < 0,
i.e. M12M21 ∼ P1P2Q12Q21 = P 2Q2 < 0; this has to be
an asymmetric wave pair. Again, different cases may be
distinguished.

For an stable-unstable wave pair, i.e. say for A < 0 <
B, different possibilities exist: cf. Figure 4, where 4 points
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Fig. 4. Stable-unstable wave interaction: the functions f1(x)
and f2(x) are depicted, for A = −1.48, B = +1, C = −1.5, and
x1 = x2 = 0. This (stable, 4 intersection points) configuration
may be destabilized either by a horizontal (vg difference) or a
vertical (A value) shift.
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Fig. 5. Stable-stable wave interaction: the functions f1(x)
and f2(x) are depicted, for A = −1, B = −4, C = −1.5 and
x1 = x2 = 0. This (stable, 4 intersection points) configuration
may be destabilized either by a horizontal (vg difference) or a
vertical (A value) shift.

of intersection ensure stability, for vg,1 ≈ vg,2). However,
either a (horizontal) shift vg difference or (a vertical shift)
in A may render the system unstable.

For A,B > 0 (both waves intrinsically unstable), one
easily sees that no intersection occurs (figure omitted; sim-
ply translate the parabola upwards in Fig. 4); the pair is
unstable.

Finally, for a stable-stable wave pair (A,B < 0), the
wave pair may stable (see Fig. 5); this configuration is
nevertheless destabilized either by a velocity misfit (a hor-
izontal shift) or a vertical shift (in A).

In conclusion, we have investigated the occurrence of
modulational instability in a pair of coupled waves, co-
propagating and interacting with one another. Relying on
a coupled nonlinear Schrödinger equation model, we have
derived a complete set of explicit (in)stability criteria, in

addition to exact expressions for the critical wavenum-
ber thresholds. Furthermore, we have traced the role of
the group velocity mismatch on the coupled wave stabil-
ity. The results are readily applied to a set of coupled
Gross-Pitaevskii equations (modelling a pair of BECs in
condensed boson gases), as exposed here, as well as in a
variety of physical situations.
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